Diffusion and consensus on weakly connected directed graphs
نویسندگان
چکیده
منابع مشابه
On weakly connected domination in graphs
Let G = (V,E) be a connected undirected graph. For any vertex v ∈ V , the closed neighborhood of v is N [v] = {v} ∪ {u ∈ V | uv ∈ E }. For S ⊆ V , the closed neighborhood of S is N [S] = ⋃ v∈S N [v]. The subgraph weakly induced by S is 〈S〉w = (N [S], E ∩ (S × N [S])). A set S is a weakly-connected dominating set of G if S is dominating and 〈S〉w is connected. The weakly-connected domination numb...
متن کاملStrong weakly connected domination subdivisible graphs
The weakly connected domination subdivision number sdγw(G) of a connected graph G is the minimum number of edges which must be subdivided (where each edge can be subdivided at most once) in order to increase the weakly connected domination number. The graph is strongγw-subdivisible if for each edge uv ∈ E(G) we have γw(Guv) > γw(G), where Guv is a graph G with subdivided edge uv. The graph is s...
متن کاملA characterization of weakly four-connected graphs
A graph G = (V, E) is called weakly four-connected if G is 4-edge-connected and G − x is 2-edge-connected for all x ∈ V . We give sufficient conditions for the existence of ‘splittable’ vertices of degree four in weakly four-connected graphs. By using these results we prove that every minimally weakly fourconnected graph on at least four vertices contains at least three ‘splittable’ vertices of...
متن کاملByzantine Consensus in Directed Graphs∗
Consider a synchronous point-to-point network of n nodes connected by directed links, wherein each node has a binary input. This paper proves a tight necessary and sufficient condition for achieving Byzantine consensus among these nodes in the presence of up to f Byzantine faults. We derive two forms of the necessary condition. We provide a constructive proof of sufficiency by presenting a Byza...
متن کاملOn computing the $2$-vertex-connected components of directed graphs
In this paper we consider the problem of computing the 2-vertex-connected components (2-vccs) of directed graphs. We present two new algorithms for solving this problem. The first algorithm runs in O(mn) time, the second in O(nm) time. Furthermore, we show that the old algorithm of Erusalimskii and Svetlov runs inO(nm) time. In this paper, we investigate the relationship between 2-vccs and domi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2019
ISSN: 0024-3795
DOI: 10.1016/j.laa.2019.05.014